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Initialization: Be sure the file NTGUtilityFunctions.m is in the same directory as that from which this
notebook was loaded. Then execute the cell immediately below by mousing left on the cell bar to the

right of that cell and then typing “shift” + “enter”. Respond “Yes” in response to the query to evaluate
initialization cells.

SetDirectory[NotebookDirectory[]];
(» set directory where source files are located =x)
Get ["NTGUtilityFunctions.m"]; (* Load utilities package x)

Purpose

This is the 9th in a series of notebooks in which | work through material and exercises in the magisterial
new book Modern Classical Physics by Kip S. Thorne and Roger D. Blandford. If you are a physicist of
any ilk, BUY THIS BOOK. You will learn from a close reading and from solving the exercises.

Analysis and solution

The statement of the problem seems straightforward. However, | found the solution required quite a bit
of background work and exposed some weak spots in my background concerning fluids. Although | was
a plasma physicist and published a number of papers in the Physics of Fluids, | never had a course in

fluid mechanics. While many plasma physicists work with magnetohydrodynamic models, that was not
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my situation. Early in my graduate research, at the consistent with their research interests of my teach-
ers, | focused on the kinetic theory of plasma as it applies to waves and instabilities. | encountered very
little of classical fluid mechanics. So - while solving this problem, | took the opportunity to work out
some details of aspects of fluid kinematics that were unfamiliar.

| start by visualizing the problem. In section E lllustration of 3-D streamline below, | derive an analytical
expression for the streamlines associated with an example flow consistent with the requirements of the
problem.

Some example streamlines for the flow

{u, v, w} ={z, z, x-y}

The next step is to construct an orthonormal coordinate system at some point sy along one of the
streamlines. Using techniques from differential geometry, | construct a Frenet-Serret frame at sq. The
three colored vectors are the tangent (red), normal(blue) and binormal(green). The yellow plane contain-
ing the normal and binormal is locally perpendicular to the streamline.
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The example flow is not curl free. There is vorticity and the unit vectors perpendicular to the streamline
will deform and rotate for s > sy. For the purposes of working out the details of the rotation called for in
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the problem, it is sufficient to consider the instantaneous rotation using a 2-D Cartesian coordinate
system with the flow in the x-y plane and the vorticity oriented in the z-direction.

| find it convenient to work with a specific example of a flow while discussing the background topics
below. | choose the flow

u=ax+2py
v=28y (1)
w=20

This flow is incompressible, but does have vorticity (rotation).

{Div[{ax + 2By, -ay}, {X, y}], Curl[{ax + 2By, -ay}, {X, y}1}

{e, -2}

This particular flow is discussed in Section 3.2.4 of Physical Hydrodynamics, E. Guyon, J-P Hulin, L.
Petit, C Mitescu. For different parameter choices the flow can be either pure deformation or pure shear.
See Section A Streamlines, pathlines and streaklines for details of the calculations leading to the follow-
ing figures.

pure deformation case pure shear case mixed case
u\_ xa+2y[3) — _ (u)_(xa+2y[3) _ — (u)_(xa+2y[3) - _
(v)_( 2YP) ta=1, p=0.001) u)=(*27P) ta=o0.001, =1 u)=(*A2YP) ta=1.p=1)
1.0 ] 1.0} 1 1.0}
2N
05¢ J K‘ ] 0.5¢ 1 0.5¢
> 00 /N — > 0.0} 1 > 00f
N\V/
-0.5 1 -0.5¢ 1 -0.5¢
-1.0r \\\\ % -1.0¢ -1.0
-1.0 -05 0.0 0.5 1.0 -1.0 -05 00 0.5 1.0 -1.0 -05 0.0 0.5 1.0
X X X

| used the Mathematica function StreamPlot to generate the stream lines.

It is useful to derive the functional form of the streamlines for the example flow. From the requirement
that a differential element is tangent to the flow —
dr x v = 0, it follows that the differential equations for the streamline are

dx ~ dy
uix, y) - vix,y)
or 2)
dy vxy)
dx  u(x,y)

In section A, | explicitly derive the following parametric representation for the streamlines associated
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with the flow in equation (1).

eS¢ (ezsaxea-y0ﬁ+e25°‘y0/3)

{x[s], yIsl} = {

a

| check this derivation by overlaying some streamlines generated with this expression on those gener-

ated by StreamPlot (see figure below).

When visualizing fluid motion, pathlines and streaklines are used in addition to streamlines. For the
purpose of comparing these entities | also consider an example of an unsteady flow in Section A. A
comparative plot of the three types of lines is presented.

An infinitesimal fluid element will propagate along a stream line but the specific interest here is how a
small Cartesian coordinate system will deform and rotate as it flows. It's easier to first consider how a
general vector will be modified by the flow and then specialize the result to vectors representing the x
and y-axes. Consider the figure below. | show how the vector r4(t) - ro(t) changes during a time interval
ot. The flow in the figure is actually generated using the the flow in equation (1) — see Section B Defor-

mation tensor: Introduction for details.

r(t)=ro(t) + Ar(t)
r1(t+6t)
Ar(t)

Ar(t+ 6t)

ro(t)
ro(t+6t)

Note

ro(t+ 6t) = ro(t) + v(rg (f)) 6t
r(t) = ro(t) + Ar(t)
r(t+6t) = ri(t) + v(ry (1)) ot

©)

There are two small quantities here — the initial separation of the two spatial points which | denote as

Ar(t), and the time interval 6t over which the fluid elements move.
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Since Ar(t) is considered small, the velocity at t is approximately

v(ri(t+ 6t) = v(rg () + Vv |o - Ar(t) (4)

The separation at time t+6t is

Ar(t+ 6t) = rq (t+ ot) — ro(t+ 6t)

r(t) +(v(ro(t)) + Vv o+ Ar(t)) 6t — (ro(t) + v(ro(f)) Ot)
(r1 (t) = ro(t)) + (v(ro (1)) ro(§) Vv [ o - Ar (1)) 6t - (ro(t) + v(ro (1)) &) (5)
= (r1 () - ro(t)) +Vv |o - Ar(t) ot
= Ar(t) +Vv |o - Ar(f) ot

IR

Thus,

Ar(t+6t) - Ar(t) = Vv |o - Ar(t) 6t (6)

The quantity vv | o can be represented as a matrix

au oy

ox 0x

JEVVloZ[a_u 6_v] (7)
9y 9y / (xo.y0)

J is called the rate of deformation tensor. Actually this tensor seems to have different names in different
areas of fluid physics and engineering.

In Section B, | also carry out the derivation just performed using Mathematica.

Decomposition of the rate of transformation matrix: The J tensor can be decomposed into compo-
nents that can be associated with different geometric effects. Split J into symmetric and anti-symmetric
parts (T denotes matrix transform)

1
J = (J+JT)+E(J—JT)E€+w (8)

N | =

where € is the rate of strain tensor and w is the vorticity tensor. The € tensor is further decomposed.
The diagonal of the € tensor is identified as the rate of translation tensor.

1
= —Tr(e)l (9)
2

where Tr denotes the trace and | is the identity tensor. Finally, o, the rate of shear tensor, is the off-
diagonal component of €.

1
o= c—ETr(e)I (10)

In summary,
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Furt

her, note that the trace term is

J =t (translation) + o (shear) + w (rotation)

(11

S0 a vanishing trace corresponds to an incompressible flow. In Section B below

ou ov

Tr(€) = — |o+— |o =V Vv
ox 0

X

that perform the decomposition of F for a given flow.

For the example flow of equation (1), the various rate tensors are

1.0-
0.5
0.0

-0.5r-

Rate of deformation tensor

Rate of strain tensor

(12)

, | implement a function

Vorticity tensor

Rate of translation tensor

b= (98] a-1s-1

Rate of shear tensor

)a:1/3:1
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— . =

T ]
ANN—————
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To illustrate the geometrical deformations | calculate the deformation of the square abcd under the flow
described by equation (1).
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1.0 1.0 1.0
a=1,8=1 a=0.0001, =1 a=1,5=0.0001

0.8 4 0.8 4 08}

d c d c d c
0.6 - 4 06 U 4 06}

a b E a b a b
0.4+ 4 04 4 04}
0.2+ 4 021 4 02}
0.0 4 0.0 4 0.0F

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

For the special case of a shear flow (a = 0), the square is sheared into a parallelogram. For the special
case of a deformation flow (8 = 0), the square is distorted into a rectangle. Note that since the flow is

incompressible, the area of the rectangle is the same as the area of the square. For the more general
flow, a = B = 1, both distortion and shear occur.

With these preliminary steps completed, | calculate the distortion of a Cartesian coordinate system. For
the x-axis, choose Ar(t) = {Ax(t), 0}. For the y-axis, choose Ar(t) = {0, Ax(t).}. As detailed below, the
deformation and rotation under the example flow is

Deformation under € Rotation under w
Y(t) V(t+6t)  V(t)
6XVM Sy, A
I V(t+6t)
byy
oy oy
|
H(t+6t) H(t+6t)
Y [ Ox 6yH
o RO 6y, o Bx

where | have shown the change in the axes over a small interval of time 6t for the example flow of
equation (1).

Remember J = € + w. The effect of rate of strain tensor € is to shear the coordinate axes — the x-axis is
rotated counterclockwise by 8y, the y-axis is rotated clockwise by 8,. The effect of the vorticity tensor is
to rotate both the x-axis and the y-axis in the counterclockwise direction.

These two axes correspond the basis axes mentioned in the problem statement. The average rate of
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rotation is

1 (6« + 6y)
2 ot

ave —

(13)

The vorticity is

6, + 6 .
w = %112:29“112 (14)
t

which is the desired result.

Supporting details follow below.

A Streamlines, pathlines and streaklines

Visualization is useful when considering kinematical fluid flows and the consideration of representative
examples is helpful.

Example 1: A stylized 2-D flow
In Section 3.2.4 of Physical Hydrodynamics, E. Guyon, J-P Hulin, L. Petit, C Mitescu, the following flow
is considered

u=ax+2py
vV=—ay
w=20

where the common notation {u, v, w} < {v, vy, v;} is adopted. This flow field has some descriptive
limiting cases.

Using Mathematica’s StreamPlot, | can immediately generate the streamlines associated with this flow.
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G[1] = With[{a = 1, B = 0.001, description = "pure deformation case"},
ShowStreamPlot[a, B, description]]

pure deformation case

(“):(Xa+2y5){a:1,ﬁzooon

v -ya

2

G[2] = With[{a = 0.001, B = 1, description = "pure shear case"},
ShowStreamPlot[a, B, description]]

pure shear case

(25377 oo

0.5}

!

-0.51

k

G[3] = With[{a = 1, B = 1, description = "mixed case"},
ShowStreamPlot[a, B, description]]

mixed case

(u)=(xa+2y/3) {a=1,B8=1}

v -ya
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Grid[{{G[1], G[2], G[3]}}]

pure deformation case pure shear case mixed case
(3)=(Xa_§,iyﬁ) {a=1, p=0.001} (3):(”_}2&}’5) {@=0.001, B=1} (3):("“_’;2(1}’/3) {a=1,p=1)
1.0+ 7/ % 1.0 1.0
05¢ J K 1 0.5+ 1 0.5
> 0.0 <}> 1 > 00r 1 > 00r
-0.5+ N FF 1 -0.5} 1 -05+
-1.01 x % -1.0} -1.0
-1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
X X X

Clear [ShowStreamPlot] ;
ShowStreamPlot[aa_, BB_, description_] :=
Module[{vFlow, lab},
VFlow[x_, y_, a_, B_] := {ax + 2By, -ay};
lab = StringForm["“\n“ =~ ", description,
Tr‘aditionalFor‘m[(:)], TraditionalForm[(ax_*'aiﬁy)], {a == aa, B == BB}];
Module[{a = aa, B = BB, R = 1},
StreamPlot[vFlow[x, y, a, B], {X, -R, R}, {y, -R, R}, ImageSize - 200,
StreamStyle - Black, FrameLabel - {{Stl["y"], ""}, {St1["x"], lab}}]]]

Streamline equations: Streamlines are determined by the condition that the streamline be tangent to
the flow.

drxv=0 (15)

| illustrate the derivation of the differential equations describing the streamlines.

wWA[1] = Cross[{dx, dy, dz}, {u, v, w}] ==

{-dzv+dyw, dzu-dxw, —dyu+dxv} =0

Each component must be zero

WA[2] = (n ) & /@ wA[1][1]

{-dzv+dyw==0, dzu-dxw=0, -dyu+dxv ==0}

wA[3] = Solve[wA[2], {dx, dy, dz}][1] // RE
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Thus, for the 2-D case the streamlines involve solving the differential equations
S

ux, y) v, )

or

dy vy

dx - u(x, y)

Formulae defining streamlines

For the example flow, start by solving the 2nd equation for y[s]

wA[4] = DSolve[{w = 1, y[@] = ye}, y[s], s]|[1, 1]
- ay[s]

y[s] » e *%y0

The first equation would then be

D[x[s], s]
WwA[5] = =1 /. wA[4]
ax[s] + 2By[s]
X' [s] __
2e59y8B+ax[s]
Hence
WA[6] = DSolve[{wA[5], X[0] == x0}, x[s], s][1, 1]

e % (@25 x0a-y0 B +e’S*ye f)
X[s] -

a

This approach provides parametric representation of the streamline

WA[7] = {x[s], y[sl} = ({x[s], y[sl} /. {wA[4], wA[6]})

{e’” (e?S*xe0-y0B+e?7y0 )

, @3¢ yO}
o

An alternative approach is to solve for y(x)

WA[7] = DSolve[D[y[x], X] = _-aylx]

> YIxIs x]
aX + 2By[x]

_ _ 2 52 C[1] _ 2 .2 C[1]
{{y[x]e X \/Xoc +4 e B}) {y[x}e Xot+\/xo¢+4e B}}
283 2p3

Determine the constant of integration.
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WA[8] = WA[7][1,1] /. x -» x0 /. y[x0] - yO // RE

—xea—\/x02a2+4ec[” B
23

ye -

In this example, choice of branch will determine whether the streamline is appropriate for one half plane
or other

WA[9] = Solve[wA[8], C[1]][1, 1]

Solve:

-4 x0y0 o -4y0?p?

C[1] - Log[- P

]

wA[10] = WA[7][1, 1] /. wA[9] // Simplify

xo<+\/x2a2+4y0/3 (x0 o +ye B)
243

yIx] - -

| illustrate that the derived forms are consistent with the streamlines generated by StreamPlot.

ShowStreamPlotWithCalculatedStreamlines[1, 1, "testing calculated streamlines"]

testing calculated streamlines

(u)z(xa+2y[3) {@=1,8=1}

v -ya

0.5}

-0.5¢

40 05 00 05 10
X
calculated streamlines
RED {x(s), y(s)}, BLUE y(x)
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Clear [ShowStreamPlotWithCalculatedStreamlines];
ShowStreamPlotWithCalculatedStreamlines[aa_, BB_, description_] :=
Module[{vFlow, lab},

VFlow[x_, ¥_, a_, B_] := {ax + 2By, -ay};

lab = StringForm["“\n“ = "~ ", description,
Tr‘aditionalFor‘m[(:)], TraditionalForm[(ax_+a§/3y)], {a == aa, B == BB}];

Module[{a = aa, B = BB, R = 1, range, G},

range = {{-R, R}, {-R, R}};

(*» streamline calculated with parametric form x)
With[{x@ = -@.1, yo = 0.5},

1
G[1] = ParametricPlot[{—e™ (e’**x@a-y@B+e’°*y0B), e >*y0},
a

{s, @, 1}, PlotStyle - Red, PlotRange - range]];
(*» streamline calculated with y(x) form x)
With[{x@ = -0.3, y@ = -0.5},

G[2] = Plot[-i(xa+\/x2a2+4y0/3 (x@ a + yo B) ),
23

{x, x0, 0.5}, PlotStyle - Blue, PlotRange - range]];
G[3] = StreamPlot[vFlow[x, y, a, B], {X, -R, R}, {y, -R, R}, ImageSize - 200,
StreamStyle - Black, FrameLabel - {{Stl["y"], ""}, {Stl["x"], lab}}];
Labeled[Show[G[3], G[1], G[2]], StleStringForm[
"calculated streamlines \n RED {x(s), y(s)}, BLUE y(x)"11]]

Example 2: Streamlines, pathlines (trajectories) and streaklines for an unsteady flow
| work through Example (4-5) found at http://www.kau.edu.sa/Files/0057863/Subjects/Chapter%204.pdf

| define a function for the velocity flow

Clear[vFlowExample2];

1 4
VFlowExample2[x_, y_, w_, t_] := {=+ —x,
2 5

N W

5 . 4
+ =Sin[wt] - —y}
2 5

This flow is incompressible and irrotational but is unsteady (involves time t)

{Div[vFlowExample2[x, y, w, t], {X, y}1, Curl[vFlowExample2[x, y, w, t1, {X, y}1}

{0, 0}

Streamlines can be obtained by solving

wA2[1] = DSolve[{D[y[x], x] == (3/2 + 5/2Sin[wt] - (4/5)y[x])/(1/2 + (4/5) x),
y[xe] == ye}, yix], x]|[1, 1]

y[x] > (15x-15x0+5y0 + 8x@y® + 25 x Sin[tw] - 25 X8 Sin[t w])

5+8x

| check this formula by overlaying a representative streamline (starting at {1/2, 0}) on the figure gener-
ated by Mathematica’s StreamPlot
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LAB = StringForm[" > = ", TraditionalForm[( u)]’
v
1/2+4/5
TraditionalForm| /2 +475x ]> (w==2n,t==2}];
3/2+5/2Sin[wt] -4/5y
Module[{w =2m, t =2,x0 = 0.5, yo = 0, exampleStreamLine},
exampleStreamLine =
Line@Table[{x, (15x-15x0 +5y0 + 8x0y0 + 25 x Sin[t w] - 25x0Sin[tw])},
5+8x

{x, ©.5, 6, 0.25}];
GSTREAMLINE = StreamPlot[vFlowExample2[x, y, w, t], {x, 0, 6},
{y, -1, 6}, ImageSize - 300, StreamStyle - LightGray,
FrameLabel - {{Stl["y"], ""}, {Stl["x"], LAB}}, Epilog - exampleStreamLine]]

4x 1

PRI [
5

5 .
+;sm(tw)+2—

Calculation of Pathlines: Pathlines are obtained by solving

dx(?)
dt

= u(f)

dy(?)
dt

= v(¥)

Equations for pathlines

While these equations can be solved analytically for this example, that would not generally be the case.
| illustrate a numerical approach that would be broadly useful.
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Clear [GeneratePathLine];
GeneratePathLine[x0_, yO , tMax_, w_] := NDSolve[

{DIx[t], t] = 1/2 + 4/5x[t], D[y[t], t] = 3/2 + 5/2Sin[wt] - (4/5) y[t],
x[@] = x@, y[@] = yo}, {x[t], y[tl}, {t, @, tMax}][1l;

| generate some representative pathlines starting at {1/2,1}, {1/2,3}, {1/2,5}

Module[{w = 2nr, tMax = 2, cases, soln, range},
range = {{0, 6}, {-1, 6}};
cases = {{1, {1/2, 1}}, {2, {1/2, 3}}, {3, {1/2, 5}}};
(soln[nﬂlﬂ] = GeneratePathLine[#[2, 1], #[2, 2], tMax, w]) & /@ cases;
GPATHLINES = ParametricPlot[{{x[t], y[t]} /. soln[1], {x[t], y[t]} /. soln[2],
{x[t], y[t]l} /. soln[3]}, {t, @, 2}, PlotRange - range, PlotStyle - Blue]]

0 L T T T T |

-1

Calculation of streaklines: | define a numerical function that generates the streakline from {x(t0) = x0,
y(t0) = y0} to {x(tMax), y(tMax)}. Remember that streaklines can be thought of as the locus of particle
markers starting at {x0, y0} at different times.

Clear [GenerateStreakPoint];
GenerateStreakPoint[x0_, yo , t0_, tMax_, w_] := NDSolve[

{DIx[t], t] = 1/2 + 4/5x[t], D[y[t], t] = 3/2 +5/2Sin[wt] - (4/5) y[t],
x[te] = x0, y[te] = y8}, {x, y}, {t, tO, tMax}][1l;

| generate points on the streakline corresponding to starting marker particles at {x0 = 1/2, y0 = 5} at
times t0 = {0, 2.0, 0.25}
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Module[{w = 27, tMax = 2, soln, x@ = 1/2, ye = 5, streakPoints, circles, range, G},
range = {{01 6]’: {_11 6}}3

streakPoints =
Table[soln = GenerateStreakPoint[x@, y@, t0, tMax, w];
{to, {x[tMax], y[tMax]} /. soln}, {te, @, tMax, 0.1}];
circles =
Tooltip[OC[# [2]], Red], ToString@StringForm["t0 = ~~", # [1]]] & /@ streakPoints;
GSTREAKPOINTS = Graphics[circles, Axes - Automatic,
AspectRatio -» 1, PlotRange - range]

-

Note that mousing a red point pops up a “Tooltip” shows the time that the corresponding streak particle
started at {x0, y0}.

Finally, | overlay the different types of lines and points on the original StreamPlot
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Show [GSTREAMLINE, GPATHLINES, GSTREAKPOINTS]

a1
”): 5 2 (w=27, t=2)
(V [—4—y+§sin(tcu)+j—]

5

B Rate of deformation tensor: Introduction

Introduction of the deformation tensor J

Consider how velocity changes with position
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ri(t)= ro(t) + Ar(t)
rq(t+6t)
Ar(t)

Ar(t+ 6t)

ro(t)
ro(t+6t)

The velocity a small distance &r from a reference point ry is approximately given by

v(rp + Or) = v(rp) + Vv(rp) Or

In the main section, | sketched the derivation of or(t+6t) using vector notation that was coordinate
independent. Just for fun, | carry out this expansion in Cartestian coordinates using Mathematica.

WB[1] = {u[{x@ + 66X, yO + 6y}], V[{x0 + 66X, yO + 6y}] }

{U[{x0 + 56X, yO+06y}], V[{X0 + 56X, yo+ 45y} ]}

Expand in a Taylor series

wB[2] = wB[1] = (NormaleSeries[wB[1], {6X, @, 1}, {8y, @, 1}] // Expand)

{U[{x0 + 56X, yOo+S6y}], V[{X0 + 65X, yO + Sy} ]
{ul{xe, yo}] +ayu'®?) (x0, y8}] + oxu'H?) [(x0, y8}] + 6x oy u' M1 [(xe, y@}],
V[{x0, yo}] + sy v &) [(x0, yo}] + sx v ) [(x@, yo}] + 6x oy v B [(xe, yo}]}

Truncate the expansion at first order in perturbed quantities

WB[3] = WB[2] /. {6X » €86X, 8y » €8y} /. €2 >0 /. € » 1

{U[{x0 + 56X, yOo+6y}], V[{X0 + 66X, yO + Sy} ]
{ul{xe, y8}] +syu'®1) [(x0, yo}] +6xu“1'°) [{x0, yo}],
V[ {x0, yo}] + sy v @) (xe, yo}] + 6xv ) [(xe, ye}]}

Construct the explicit change in velocity
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wB[4] = MapEqn[ ({#[1] - u[{x@, yo}], #[2] - v[{x®, ye}]}) & wB[3]] /.
-u[{x0, yO}] +u[{x0 + 6x, yO + 8y}] » éu /. -v[{x0, yO}] +V[{x0O + 56X, yO + 6y}] -» 6V

{éu, ov} =
{oyu®1)(x0, yo}] +6xu't®) [(xe, yo}], sy v (@1 [(x0, yo}] + 6xv 10 [(xe, yo}]}

The right hand side can be expressed as a matrix that | represent by J

WB[5] =3J == wB[4][2] /. Plus -» List /. {6x » 1, 8y - 1};
wB[5][2] // MatrixForm

ul®1) [(xe, yo}] u“he”[{xe,ye}l)
v (x0, yo}] v [({x0, yo}]

wB[6] = wB[4][1] == Inactive[Dot][J, {&6x, &y}] /. (WB[5] // ER)

{ou, ov} = {{u® 1(xe, yo}], u'™ [(xe, yo}]},
{vi®1) [(xe, yo}], v!2®) [(x0, yo}]}}.{6x, 6y}

In standard notation

Qu Qv
ou _ | ox oy ox\) _
(&)_[ﬂ @] (®)=Aﬁw
x0,y0

ax  dy

The matrix J is called the rate of deformation tensor. The term “rate” is used because the displacement
tensor X; is related to J by

Creation of visualization of the deformation of a vector.

Clear [ShowPoint, ShowVector, vFlow];

ShowPoint[pt_, text_, off_] :=
{Black, PointSize[©.02], Point[pt], Text[Style[text, Bold], pt + off]};

ShowVector [ptStart_, ptFin_, text_, off_] :=

ptStart + ptFin

2

{Arrow[{ptStart, ptFin}], Text[Style[text, Bold], + off]};
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VFlow[{X_, y_}, a_, B_] := {ax + 2By, -ay};
Module[{a = 1, B = 1, x0 = 0.4, yO = 0.5, 6x = 0.2, 8y = 0.2,
6t = 0.1, ro, 6r, ri, vo, rotpst, ritpst, robjects, vObjects},
(*» starting position of vector x)
ro = {x0, yo};
sr = {6, 6y};
rl = re + ér;
(» vector after flow over interval &t x)
rotpét = ro + vFlow[re, a, pB] o6t;
rltpét = rl +vFlow[rl, a, pB] &6t;

rObjects = {ShowPoint[r@, "ro(t)", {-0.05, -0.05}],
ShowPoint[rl, "r;(t)= re(t) + Ar(t)", {0.05, 0.05}],
ShowPoint [r@tpst, "ro(t+6t)", {-0.05, -0.05}],
ShowPoint [r1tpst, "r;(t+6t)", {0.05, 0.05}],
ShowVvector[re, ri, "ar(t)", {-0.05, 0}],
ShowVector [rotpst, ritpst, "ar(t+ 6t)", {0.1, 0}]1};
vObjects = {Blue, ShowVector[r@, rotpst, "v(re(t))", {0.025, 0.025}],
ShowVector[ri, ritpst, "v(ri(t))", {-90.025, -0.025}]1};
Graphics[{robjects, vObjects},
Axes - None, AspectRatio - 1, PlotRange - {{0, 1}, {9, 1}}]1]

r(t)=ro(t) + Ar(t)

ri(t+6t)

Ar(t)
Ar(t+ 6t)

ro(t)
ro(t+6t)

C Rate of deformation tensor: Decomposition

The rate of deformation tensor can be decomposed into parts that have different physical effects on the
fluid.
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= {{D[vX[X, Y], x], D[vy[X, y], X1}, {D[VX[X, Y1, y1, D[vy[Xx, y]1, ¥1}};
J // MatrixForm

vx @9 [x, y] vy @9 [x, y]
vx (@ [x, y] vy @Y [x, y]

This is decomposed into symmetry and anti-symmetric forms. The symmetric part is the rate of strain
tensor

1
wC[2] = €ij == — (J + Transpose[J]);
2

wC[2][2] // MatrixForm

vx (1.0 [x, y] S (@D D, y] vy 9 [x, y])
> (@Y, y] vy 9 [x, y]) vy @1 [x, y]
The anti-symmetric part is the rate of rotation tensor
- 1
WC[3] = wij == — (3 - Transpose[J]);
2
wC[3][2] // MatrixForm
e S (X @D X, y] vy @O [x, y])
S (vx©@V Ix, y] - vy @0 [x, y]) 0

The diagonal part of the strain tensor is the rate of expansion tensor

1

wC[4] = tij == = Tr[wC[2][2]] IdentityMatrix[2];
2

wC[4][2] // MatrixForm

S vy @YX, vl vx @9 [x, y] ) 0
0 > vy @YX, y) vx B9 [x, y] )

The off-diagonal part of the strain tensor is the rate of shear tensor

WC[5] = oij =wC[2][2] - lTr‘[wC[Z] [21] IdentityMatrix[2];
2
wC[5][[2] // MatrixForm

(X, Y] 7 (wx!

SU %, y] + gy (-vy

> vy @Y x, vyl - vx B9 [x, y] )+ vx (10 e L9 1x, y7)

V%, y] - vx B9 [x,

(X, y] +vy!

S (@Y, y] vy B9 [x, y]) vy (@,1)

| define functions for constructing and decomposing the deformation matrix
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Clear [ConstructDeformationMatrix, DecomposeMatrix];
ConstructDeformationMatrix[{vx_, vy_}] :=
Module[ {3},
J = {{D[vx, x], D[vy, x]}, {D[vx, y], D[vy, y1}}1;

DecomposeMatrix[J_] :=
Module[{eij, wij, tij, oij},
(* symmetric part =)
1
€ij = — (3 + Transpose[J]);
2
(* anti- symmetric part =*)
1
wij = — (3 - Transpose[J]);
2
(* trace =x)

tij = le‘[eij] {{1, @}, {0, 1}};
2

(» off diagonal part x)
oij = eij - tij;
{eij, wij, tij, oij}]

| illustrate the motions associated with these tensors using the example flow considered above.
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Clear[vFlow];
VFlow[x_, y_, a_, B_] := {ax + 2By, - ay};

Module[{3J, €, w, t, o, lab, G},
J = ConstructDeformationMatrix[vFlow[x, y, a, B1];
{e, w, t, o} = DecomposeMatrix[3J];

Module[{aa = 1, BB =1, size = 225, INum, eNum, wNum, tNum, oNum},

JNum = ConstructDeformationMatrix[vFlow[x, y, aa, BB]11];
{eNum, wNum, tNum, oNum} = {e, w, t, o} /. {a » aa, B - BB};

lab["J"] = StringForm["Rate of deformation tensor\n™™ = "~ a =" g8 = """,
"Ji;", MatrixForm[J], aa, BB];
G["J"] = Labeled[StreamPlot[JNum. {6x, &y}, {6x, -1, 1},
{6y, -1, 1}, ImageSize - size], lab["J"], Top];
lab["e"] = StringForm["Rate of strain tensor\n™" = "~ a = "~ B = R
"eij", MatrixForm[e], aa, BB];
G["e"] = Labeled[StreamPlot[eNum . {6x, &y}, {6x, -1, 1},

{6y, -1, 1}, ImageSize - size], lab["e"], Top];
lab["w"] = StringForm["Vorticity tensor\n™" = "~ a = "~ B = R
"wiy", MatrixForm[w], aa, BB];
G["w"] = Labeled[StreamPlot[wNum . {6x, &y}, {éx, -1, 1},

{6y, -1, 1}, ImageSize - size], lab["w"], Top];
lab["t"] = StringForm["Rate of translation tensor\n™™ = "~ a ="~ B = ™",
"ti;", MatrixForm[t], aa, BB];
G["t"] = Labeled[StreamPlot[tNum. {6x, &y}, {6x, -1, 1},
{6y, -1, 1}, ImageSize - size], lab["t"], Top];
lab["o"] = StringForm["Rate of shear tensor\n™™ = "~ a = "~ B = R
"oi5", MatrixForm[o], aa, BB];
G["o"] = Labeled[StreamPlot[oNum . {6x, &y}, {éx, -1, 1},

{6y, -1, 1}, ImageSize - size], lab["o"], Top];
Grid[{{G["3"], G["e"], G["w"]}, {G["t"], G["0"]}}1]]
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Vorticity tensor

Rate of deformation tensor Rate of strain tensor wij =
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D lllustrations of deformation

To illustrate deformation in a flow field, | use the same example flow field and associated streamlines

derived in previous sections. However, it is relatively straightforward to modify the code below to incorpo-
rate other flow models.

The first objective is to just visualize the deformation of the representative square as it moves in the
flow field. Details of the deformations will follow.
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Grid[ { {ShowReferenceRectangle[1l, 1],
ShowReferenceRectangle[0.0001, 1], ShowReferenceRectangle[1l, 0.0001]}}]

1.0 4 1.0 4 1.0} B
a=1,8=1 a=0.0001, =1 a=1,8=0.0001

0.8 4 08 4 08} R
d c d c d c

0.6 - 4 06 U 4 06} R
a b E a b a b

0.4 4 04 4 04} B

0.2+ 4 02 4 02} R

0.0 4 0.01 4 0.0F R

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Clear [ShowReferenceRectangle];
ShowReferenceRectangle[a_, B_] := Module[{x0 = ©0.2, yO = 0.5, Ax = 0.2,
Ay = 0.2, refPoints, movedRefPoints, DisplayRefPoint, text, lab, G},
DisplayRefPoint[{x_, y_, lab_}] := {PointSize[0.02],
Point[{x, y}], Text[lab, {x, y} + {-0.05, -0.05}]};

refPoints = {{x@, yO, "a"}, {x0+Ax, yo@, "b"},
{x0 + Ax, yO+Ay, "c"}, {x0, yo+aAy, "d"}, {x0, yO, "a"}};
movedRefPoints = With[{s = 0.25},

StreamLineExample[s, #, a, B] & /@ refPoints [All, {1, 2}71];

text = StringForm["a = ~~, B = """, a, B];
lab = Text[text, {0.2, 0.9}];
G[1] =

Graphics [ {DisplayRefPoint /@ refPoints, Line[refPoints [All, {1, 2}] ], Linee
movedRefPoints , Point /@ movedRefPoints, lab}, PlotRange - {{0, 1}, {9, 1}}];

G[2] = StreamPlotBackground[a, J];

Show[G[2], G[1]]]

Clear [vFlowExample, StreamLineExample, StreamPlotBackground];
vFlowExample[x_, ¥ , a_, B_] := {ax + 2By, -ay};
StreamLineExample[s_, {x0_, yO }, a_, B_] :=

{le‘s"’ (e?**x0a-yopB+e***yoB), e>“y0};
[0

StreamPlotBackground[aa_, BB_] :=
Module[{a = aa, B = BB, R = 1},
StreamPlot [vFlowExample[x, y, a, B],
{x, @, R}, {y, 0, R}, ImageSize -» 200, StreamStyle - LightGray]];

Distortion of the coordinate system

Clear[vFlow];
VFlow[x_, y_, a_, B_] := {ax + 2By, - ay};
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Clear [ShowPoint, ShowVector, ShowArc];

ShowPoint [ {pt_, text_, off_}] :=
{Black, PointSize[0.02], Point[pt], Text[Style[text, Bold], pt + off]};

ShowVector [ptStart_, ptFin_, text_, off_] :=

ptStart + ptFin

2

{Arrow[{ptStart, ptFin}], Text[Style[text, Bold], + off]};

ShowArc[O_, r_, eStart_, 6Fin_] :=
Module[ {PtoC},
PtoC[rr_, ©_] := rr {Cos[®], Sin[6]};
{Arrowheads [Small] ,

T
ArroweTable[0 + PtoC[r, 6], {6, eStart, eFin, Sign[eFin - eStart] —}]}]
64

Module[{a = 1, B = 1, VX, vy, J, €, w, lab, G},
{vx[x, yl, vy[X, y1} = vFlow[x, y, a, B];
J = {{D[vx[X, Y], X], D[vy[x, y1, x]}, {D[vX[X, Y], Y], D[vy[x, ¥, y1}};

1
e = — (J + Transpose[J]);

1
w = — (J - Transpose[J]);

lab = stleStringForm["Deformation under €"];
G[1] = ShowDeformationRotation[e, lab];

lab = Sstle@StringForm["Rotation under w"];
G[2] = ShowDeformationRotation[w, lab];

Grid[{{G[1], G[2]}}]]

Deformation under € Rotation under w
V(t) V(t+6t) V()
Xy Syy
V(t+6t)
Syy
oy oy
—
H(t+6t) H(t+t)
5 &
T o N | YH ox YH
- [1A)
o H() Oxy o OXy
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Clear [ShowDeformationRotation];
ShowDeformationRotation[Amat_, lab_] :=
Module[{ax = 1, Ay = 1, 6t = .2, 0 = {0, 0}, R = 1.5, ro, rl, J, ¢, w, H
(«H(t) %), Hp (+H(t+5t)x), OHLine, OHpLine, &xHLine, SyHLine, V, Vp,
OVLine, OVpLine, &6xVLine, &yVLine , axes, range, points, 6xArc, 6yArc, ePolar},
6Polar[{xx_, yy_}] := ToPolarCoordinates[{xx, yy}]1[2] ;
range = {{-R/3, R}, {-R/3, R}};
axes = {LightGray, Line /e {{O, {R, ©0}}, {0, {©, R}}},
Text["x", {R, 0} + {-0.025, -0.05}], Text["y", {O, R} + {-0.05, -0.025}1};

(» transformation of horizontal vector =)

H = {ax, 0};

Hp = H + Dot [Amat, H] &t;

OHLine = {Black, Thick, ShowVector[O, H, "", {©, -0.075}]};
OHpLine = {Blue, Thick, ShowVector[O, Hp, "", {0, -0.075}]};
6xHLine = {Blue, ShowVector[H, {Hp [1], @}, "éx4", {©, -0.075}1};
&yHLine = {Blue, ShowVector[{Hp [11, @}, Hp, "&ys", {0.075, ©0.0}]1};
(» transformation of vertical vector x)

V = {0, Ay};

Vp = V +Dot[Amat, V] &6t;

OVLine = {Black, Thick, ShowVector[O, V, "", {0, ©}1};

OVpLine = {Blue, Thick, ShowVector[O, Vp, "", {0, ©}]};

6xVLine = {Blue, ShowVector[V, {O@, Vp [2]}, "éxy", {-0.075, 0}1};
SyVLine = {Blue, ShowVector[{©, Vp [2]}, Vp, "6yv", {0, -0.075}]};

points = ShowPoint /e
{{0, "0", {-0.05, -0.05}}, {H, "H(t)", {-0.065, -0.05}}, {V, "V(t)",
{0.05, 0.05}}, {Hp, "H(t+56t)", {0.05, ©.05}}, {Vp, "V(t+6t)", {0.05, 0.05}}};

oxArc = With[{r = Ax /2, eStart = ePolar[H] , 6Fin = ePolar [Hp] },
{showArc[0, r, estart, eFin],
Text["ex", 0+ 1.2r {Cos[(eStart + 6Fin) /2], sin[(estart + oFin) /2]}]}];
eyArc = With[{r = Ax /2, estart = ePolar[V] , 6Fin = ePolar[Vp] },
{ShowArc[0, r, eStart, Fin],
Text["ey", 0+ 1.2r {Cos[(eStart + 6Fin) /2], sin[(estart + oFin) /2]}]}];

Graphics[{axes, points , 6xArc, 6yArc, OHLine, OHpLine,
6xHLine, éyHLine, OVpLine, &6xVLine, 6yVLine}, Axes - None,
AspectRatio » 1, PlotRange - range, PlotLabel - lab, ImageSize - 300]]

E lllustration of 3-D streamline

| construct a representative streamline for the 3D flow

{u, v, w} = {z, z, x — »}

StreamPlot only works for 3-D, so | visualize the 3-D flow using VectorPlot3D.
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Module[{R = 2},

VectorPlot3D[{z, z, x-y}, {X, -R, R}, {y, -R, R}, {z, -R, R}]]
2

-2

A/<_f
2\ -<—

| derive a closed form parametric expression for the streamline. Relate x and z with

Clear[x, y]

WE[1] = DSolve[{% - 1, % 1}, (xIsl, yIsl}, s]@1 /.

{K[1] > ©, K[2] » t, C[1] » &, C[2] - B} // RE

{x[s} = ﬂ%—JSZ[t] dt, y[s] = 847Jsz[t] dt}
1

1

Eliminate the common integral expression

WE[2] = Solve[wE[1][1I, _rz[:] dc][1, 1T
1

Jsz[t] dt - -A+X[Ss]
1

WE[3] = wWE[1][2] /. WE[2]

y[s] = -A+B+Xx[s]

Redefine the constant of integration
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wE[4] =

wE[3] /. -A+B8 > C

y[s] = C+Xx[s]

Next relate x and z

D 5 D D
wE[5] = DSolve[{M: 1, [z[s], s] = 1}, {x[s], z[s]}, s][1] // RE
z[s] x[s] - (C+Xx[s])
s2¢
{x[s] = - +C[1] +sC[2], z[s] = -sC+C[2]}
2
| want to express the constants of integration in terms of the starting point of a given streamline.

yo == x0

WE[6] = WE[4] /. s> @ /. {x[0] » x0, y[0] - y@}

+C

wE[7]

= Solve[wE[6], C][1, 1]

C—> -X0 +y0

Thus, x and y are related by

WE[8] = wE[4] /. WE[7]
y[s] == -X0 +y0 + X[s]
Now the other constants of integration are determined

WE[9] = wE[5] /. WE[7]

{x[s] = -152 (-x0+y@) +C[1] +5C[2], Z[S] = -5 (-x@+Yy@) +C[2] }

2

wE[10] = wE[9] /. s » O /. {x[0] -» x0, z[O] - z0}

{x@ =C[1], z0 = C[2]}

wE[11] = Solve[wE[10], {C[1], C[2]}][1I

{C[1] > x@, C[2] —> 20}

x and z are given by
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wE[12] = wE[9] /. wE[11]

{x[s] =x0- !

—s? (-x0+y0) +520, z[s] = -5 (-x@+Yy0) + 20}
2

and y was given by

WE[13] = wE[8] /. (WE[12][1] // ER)

1
y[s] =ye- —s® (-x0+y0) +s20
2

Combining these

wE[14] = {wE[12][1], wE[13], wE[12][2]}

{x[s] =x0- 1s2 (-xe+ye) +s zeo,
2
y[s] = yo - 1s2 (-x@+y0) +520, 2[s] = -5 (-x@+Yy0) + 20}
2
or, finally,

WE[15] = MapEgqn[Simplify, #] & /@ wE[14];
WE[15] // ColumnForm

X[s] = X0 + % s2 (x0-ye) +sz0

y[s] = %52 (x0 - y@) +y0 +sz0

z[s] =s (x@-y0) + 20

| collect the right hand sides for numerical purposes

wE[16] = #[2] & /@ wE[15]

2

{xOJrEs2 (xe-yo) +s z0, 1s2 (x6-y0) +y0+s20, s (x0-y0) +z0}
2

Clear [ExampleStreamLine3D];
ExampleStreamLine3D[s_, {x0_, y@_, z0_}] :=

| visualize some representative streamlines

{x0+£s2 (xe - ye) +s zo, ls2 (xe -ye) +ye +sz0, s (xo -ye) +ze}
2 2
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ParametricPlot3D[ {ExampleStreamLine3D[s, {5, 1, 0}],
ExampleStreamLine3D[s, {10, 1, ©}], ExampleStreamLine3D[s, {15, 1, ©}]1},
{s, 9, 3}, AxesLabel -» {"x", "y", "z"}, BoxRatios -» {1, 1, 1}, PlotLabel - Stl[
StringForm["Some example streamlines for the flow\n{u, v, w} = ~°", {z, z, x-y}] 1]

Some example streamlines for the flow
{u,v,w}={z, z, x-y}

To illustrate flow deformation near some point, | need to generate a reference coordinate frame. | draw
on differential geometry

From C : \NT G\2017\Analysis\Differential Geometry 01 - 15 - 17

Clear [FrenetSerretFrameAssociation];
FrenetSerretFrameAssociation[F_, s_] :=
Module[{function, df, d2f, d3f, vTangent, vBinormal,
vNormal, x (xcurvaturex), t (xtorsionx), names, values},
{function, df, d2f, d3f} = {F[s], D[F[s], s], D[F[s], {s, 2}], D[F[s], {s, 3}1};
vTangent = Simplify[df /Norm[df], s € Reals];
vBinormal =
With[{temp = Cross[df, d2f]}, Simplify[temp//Norm[temp], s € Reals]];
vNormal = with[{temp = Cross[vBinormal, vTangent]},
Simplify[temp /Norm[temp], s € Reals]];
Norm[Cross [df, d2f]]
Norm[d2f]3
Dot [df, Cross[d2f, d3f]]

Norm[Cross [df, d2f]]2

names = {"function", "tangent", "normal”, "binormal", "curvature", "torsion"};
values = {function, vTangent, vNormal, vBinormal, x, t};
AssociationThread[names, values]]

X
1l

Simplify|[ » S € Reals];

, S € Reals];

T

Simplify|
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| generate the parametric equation for a particular set of initial conditions

ExampleStreamLine3D[s, {5, 1, 0}]

{5+25%,1+25% 45}

Clear[F, A];
Fls_] :={5+2s%, 1+25?, 4s};
A = FrenetSerretFrameAssociation[F, s]

S S 1

)

<’function - {5+2s%, 1+25%, 4s}, tangent - {

3 3
V14252 /14282 J1+25s2

1 1 V2 s
nor‘ma1—>{ s , - },
N2+4s2 A2+452 \1+25s2
1 1

1
binormal - {- , @}, curvature - —, torsion - @ ‘)
8

NEREY

| illustrate a Cartesian coordinate system at a particular point along the streamline. | also illustrate the
plane normal to the streamline at that point.

Module[{ s@ = 3, scale = 5, P, ptP, vecTNB, plane, g},
P = F[sO];
ptP = {Red, PointSize[0.02], Point[P]};
vecTNB = {Arrowheads[Medium], {Red, Thick, Arrow[{P, P +scaleA["tangent"]}]1},
{Blue, Thick, Arrow[{P, P +scaleA["normal”]}]},
{Darker [Green, 0.5], Thick, Arrow[{P, P +scaleA["binormal”]}]}} /. s - sO;
g[1] = ParametricPlot3D[F[s], {s, 0, 4}, PlotStyle - Black,
BoxRatios -» {1, 1, 1}, AxesLabel -» {"x", "y", "z"}];
plane = InfinitePlane[{P, P +scaleA["normal”], P +scaleA["binormal”]}] /. s - s@;
g[2] = Graphics3D[{ptP, vecTNB, {LightYellow, plane}}, BoxRatios - {1, 1, 1}];

Show[{g[1], g[2]}]1]




